
Individualized Treatment Effects Using a
Non-parametric Bayesian Approach

Ravi Varadhan
Nicholas C. Henderson

Division of Biostatistics & Bioinformatics
Department of Oncology
Johns Hopkins University

July 27, 2017



Acknowledgements

I Drs. Tom Louis and Gary Rosner

I Patient-Centered Outcomes Research Institute (PCORI) Award
(ME-1303-5896)

I Dr. Dan Scharfstein and the CTSA Supplement Award

2



Why is HTE Important?

The paradox of the clinical trial is that it is the best way to assess
whether an intervention works, but is arguably the worst way to
assess who benefits from it. (Mant, 1999)
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Heterogeneity of Treatment Effect (HTE)

I Heterogeneity of Treatment Effect (HTE) refers to variability in
treatment response that is attributable to observable differences
in patient characteristics.

I Consistency of treatment effect across key patient subgroups -
subgroup analysis - most prevalent form of HTE assessment

I Tests for treatment-covariate interactions - less common.
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HTE Goals/Questions

I Our view: HTE assessment encompasses a broad range of related
goals and questions.

I This goes beyond conventional subgroup analysis and
treatment-covariate interactions.

Key questions of interest include:

I Quantifying overall heterogeneity in treatment response.

I Estimating the proportion of patients that benefit from treatment

I Detection of cross-over (qualitative) interactions.

I Estimation and prediction of individualized treatment effects.

I Optimal allocation of treatments to individuals
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Modeling HTE

I In contrast to subgroup analysis, many important HTE questions
could be directly addressed if a sufficiently rich model describing
patient outcomes were available.

I Bayesian nonparametric methods are well-suited to provide this
individual-level view of HTE.

I Bayesian nonparametrics allow construction of flexible models for
patient outcomes coupled with probability modeling of all
unknown quantities

I Motivation of this work: Develop a flexible, non-parametric
approach that can address many of the previously highlighted
HTE goals.
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Why Bayes?

I The phrase ‘heterogeneity of treatment effects’ implies an
underlying distribution of treatment effects

I Thus a Bayesian framework appears natural

I Emphasizes estimation of treatment effect heterogeneity rather
than hypothesis testing.

I Well-suited to estimation with many parameters and small
subgroups. Tends to prevent “over-fitting”.
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Why Bayes?

I Direct probability statements for questions of interest:
– e.g., what is the probability that a given individual will benefit from the

treatment?

I Customized treatment recommendations - can utilize the
posterior for each individual, can directly weigh efficacy versus
safety.
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Time-to-Event Data and Notation

I Our focus here is on cases where patient outcomes are recorded
as time-to-events.

I For the i th patient, we observe Yi = min{Ti ,Ci}

Ti - failure time
Ci - censoring time
δi = 1 if Ti ≤ Ci , and δi = 0 if Ti > Ci

Ai - treatment assignment, Ai = 1 or Ai = 0
xi - a collection of baseline covariates
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Accelerated Failure Time (AFT) Models and Individualized
Treatment Effects

I We assume patients are randomly assigned to one of two
treatments A = 1 or A = 0.

I Consider the AFT model for log-failure time Ti

logTi = m(Ai , x i )︸ ︷︷ ︸
Regression Function

+ Wi︸︷︷︸
Error Term

; E (Wi ) = 0

I The “Individualized Treatment Effect” θ(xi ) for the i th patient is
the difference between expected log-failure under treatment
A = 1 and expected log-failure time under treatment A = 0

θ(x i ) = E
[

logTi |Ai = 1, x i

]
− E

[
logTi |Ai = 0, x i

]
= m(1, x i )−m(0, x i ).

I The ratio of expected failure times offers a more interpretable
measure of treatment effect

ξ(xi ) =
E
[
Ti |Ai = 1, x i

]
E
[
Ti |Ai = 0, x i

] = exp{θ(xi )}
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Accelerated Failure Time (AFT) Models

I In contrast to Cox-proportional hazards model, AFT models
provide a direct relationship between survival times and patient
covariates.

I AFT models have a nice interpretation as a regression with
log-time as the response.

I They provide interpretable measures of treatment effect: i.e.,
differences in expected log-survival time or ratios in expected
survival,
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Modeling the Regression Function

I Our flexible approach to modeling the regression function
m(Ai , x i ) of the AFT model is to use Bayesian additive
regression trees (BART)

Advantages of BART:

I Good at handling interactions and non-linearities

I Very effective as an “off-the-shelf” method - works quite well
without any hyperparameter tuning.

I Seamlessly incorporates both discrete and continuous predictors.

I Automatically provides measures of uncertainty despite the
complex nature of the model.
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Using the Nonparametric AFT model to assess HTE

The posterior distribution of all unknowns in the AFT model can be
used to assess a variety of questions.

For example,

I Point estimates of covariate-specific treatment effects

I The “distribution” of treatment effects

I Proportion of patient expected to benefit from treatment

I Qualitative interactions.

I The posterior can potentially be utilized in an individualized
decision analysis
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Application: The SOLVD trial

I A placebo-controlled trial studying the efficacy of the drug
Enalapril in chronic heart failure patients

I 2, 569 enrolled in the treatment trial and 4, 228 enrolled in the
prevention trial

I We utilized 18 patient covariates common to both trials (e.g.,
age, gender, ejection fraction)
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The AFTrees package

The methods discussed here are implemented using the R package:
AFTrees.

## An example:

library(AFTrees)

solvd.fit <- AFTrees(X, y, status, ndpost = 2000)

## X - design matrix

## y - follow-up time

## status - event indicator (1 if event, 0 otherwise)

## ndpost - number of posterior draws

The AFTrees package is available for download at
http://www.hteguru.com/software

15

http://www.hteguru.com/software


Individualized treatment effect estimates for all patients in
the SOLVD treatment and prevention trials.
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Distribution of treatment effects in the SOLVD trials.

treatment effect (ratio in expected survival)
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Proportion Benefiting

I The proportion of patients benefiting is the proportion of
individuals with a positive treatment effect (i.e., θ(xi ) > 0)

Q =
1

n

n∑
i=1

1{θ(xi ) > 0} =
1

n

n∑
i=1

1{ξ(xi ) > 1}

I Alternatively, one could define the proportion benefiting relative
to a clinically relevant threshold ε > 0, i.e.,
Qε = 1

n

∑n
i=1 1{θ(xi ) > ε}.

I An estimate of Q is obtained from taking the area under the
curve to the right of 1 in the graph of treatment effect
distribution (shown on the previous slide).

I The estimated proportions of patients benefiting were 95.6% and
89.1% in the SOLVD-T and SOLVD-P trials respectively.
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Evidence of Benefit

Treatment Trial Prevention Trial

P{ξ(xi ) > 1|data} ∈ (0.99, 1] 51.38 20.47
P{ξ(xi ) > 1|data} ∈ (0.95, 0.99] 24.69 23.71
P{ξ(xi ) > 1|data} ∈ (0.75, 0.95] 20.08 41.98
P{ξ(xi ) > 1|data} ∈ (0.25, 0.75] 3.85 13.84

P{ξ(xi ) > 1|data} ∈ [0, 0.25] 0.00 0.00

Table: For each trial, the percentage of patients whose estimated posterior
probability of treatment benefit lies within each of the intervals
(0.99, 1], (0.95, 0.99], (0.75, 0.95], (0.25, 0.75], and [0, 0.25].
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Evidence of Differential Treatment Effect
I For patient i , the posterior probability of a greater than average

treatment effect may be defined as

Di = P{θ(xi ) ≥ θ̄|data}, θ̄ =
1

n

n∑
i=1

θ(xi )

and the posterior probability of a “differential” treatment effect is

D∗i = max{1− 2Di , 2Di − 1}.
I Note that D∗i will be close to 1 whenever Di is either close to 1

or close to 0.

Treatment Trial Prevention Trial

D∗i > 0.95 19.36 7.30
D∗i > 0.80 41.93 31.58

Table: For each trial, the percentage of patients that show “strong” (i.e.,
D∗

i > .95) and “mild” (i.e., D∗
i > 0.80 but D∗

i ≤ 0.95) evidence of
differential treatment effect.
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Individual-Specific Posterior Survival Curves in SOLVD
treatment trial
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Examining Qualitative Interactions
I Beyond quantitative heterogeneity, examination of qualitative

interactions is often of key interest.

I Qualitative Interaction: occurs when the treatment effect in
one subgroup has a different sign than in another subgroup.

I The presence of qualitative interactions can be examined by
looking at the posterior histogram.

I For pre-specified subgroups of interest such as male vs. female,
we can look at the posteriors of the subgroup-level treatment
effects

θmale =
1

Nmale

∑
i∈male

θ(xi )

θfemale =
1

Nfemale

∑
i∈female

θ(xi )
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SOLVD data: posterior of θmale and θfemale
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P
{
sign(θmale) 6= sign(θfemale)|data

}
= 0.035



Variable Importance: Partial Dependence Plots
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Summary

I A flexible Bayesian approach for HTE assessment

I Fully non-parametric

I Default hyper-parameter settings, hence minimal user input

I Easy to use R package: AFTrees
http://www.hteguru.com/software

I Give it a try and send us feedback!
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